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The method of rational thermodynamics of Truesdell's school (non-linear thermomechanics 
of continuum) has been applied to mixtures of a solid substance with chemically reacting fluids. 
The kinematics, balances, and stoichiometry in such mixtures are formulated, and constitutive 
equations are proposed involving the effects of diffusion, heat conduction, and long-term memory 
expressed by internal parameters. The final form of the constitutive equations has been obtained 
by applying the constitutive entropic principle of Coleman and Noll. The equilibrium in the 
mixture is discussed. 

The present paper deals with both reversible and irreversible (transport) phenomena 
in mixtures of a solid with chemically reacting fluids (e.g. gases) with the aim to use 
the results in the description of heterogeneous catalysis 1. We use the method of 
rational thermodynamics (non-linear mechanics of continuum) of Truesdell's 
school2 -7 and the results of our preceding workss ,9 about mixtures of a solid with 
non-reacting fluids. In contrast to the earlier thermodynamic analyses of such mix­
tures6 •10 we consider also the influence of internal (hidden) parameters modelling 
some memory effects, which may in heterogeneous catalysis represent, e.g., the 
influence of adsorption, desorption, or surface reaction I . 

Basic Concepts and Kinematics 

As in the preceding works, vectors and tensors are denoted by small and capital 
bold type letters; Cartesian components and the summation rule are used in com­
plicated expressions. These components are denoted by Latin superscripts: lower 
case for space (Euler) coordinates, upper case for reference (Lagrange) coordinates. 
The motion of a mixture of n constituents, of which the n-th is solid (or more precisely 
a substance of arbitrary symmetry) and the other are fluid, can be described as super­
position of motions of the constituents oc = 1, 2, ... , n 

(1) 
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Irreversible Thermodynamics of Mixtures 1621 

representing mapping of the particles Xa (positions in the body of the constituent IX 

in its reference configuration) into the point x in the mixture at the instant t (here 
exceptionally Xa denotes vector; deviations from the notation of subscripts will occur 
below in stoichiometry). In actual configuration, all n particles Xa of the constituent 
bodies hence occupy any point in the mixture at an instant t (compare2 - 4 ,6). We 
assume that the mapping (1) is invertible with respect to X a , so that the deformation 
gradient Fa defined as 

Fa == Grad la' or (2) 

is a regular tensor. Hence 

(3) 

The second deformation gradient is defined as 

G G d F . G!JK = ;"IF!J/;"lX~. a == ra a' I.e. ~ u ~ u ~ (4) 

We note that 

or (5) 

where - 1 denotes inversion. The velocity Va of constituent IX is defined as 

(6) 

and the (spatial) velocity gradient La is defined as 

(7) 

(the reference and spatial gradients are respectively denoted as· Grad and grad). 
The diffusion velocity Ua of constituent IX (with respect to the solid constituent) is 

(8) 

and accordingly Un = o. Hence, by the invertibility relation (1), we have for any 
quantity t/J = t/J(x, t) of the mixture also t/J = t/J(Xa, t), and the time derivative of the 
latter function is denoted as material derivative, Dat/J/Dt, for which we have 

(9) 

where at/J/at is the time derivative of t/J(x, t). For the n-th constituent (solid), we shall 
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use the notation 

(lO) 

and accordingly 

DIZt/I!Dt = '" + UIZ ' grad t/I . (11) 
So, e.g. VIZ = DIZIIZ!Dt or 

La = (DIZFIZ!Dt) F; 1 . (12) 

General Postulates 

Here, we give the conservation laws and the second law of thermodynamics in local 
forms in the reacting mixture2 •10 (for derivation from postulated global balances 
see refs6 •7). 

The balances of the constituent masses are 

DIZ{lIZ!Dt + {lIZ div VIZ = rlZ , ex = 1 , ... , n , (13) 

where {la denotes density (mass concentration) of constituent ex in the mixture and r", 
is the production of its mass per unit time in unit volume due to chemical reactions. 
The balances (13) can, with respect to Eq. (9), be rewritten in the form 

8{la!8t + div {laVa = rlZ • (l4) 

From this we derive the (spatial) gradient 

8hlZ!8t + (grad ha) v'" + {lIZ div L! + h,.,L", + ha tr La = grad r", , (15) 

where div L! is in the component form 8I.!~!8xl (T denotes transposition) and the 
density gradient is 

ha == grad {lIZ' ex = 1, ... , n . (l6) 
If we set by definition 10 

YIZ == ElZ{la (17) 

then the mass balance of constituent ex (13) can be written as 

D .. Ya!Dt = ElZra , ( 18'1 

where use was made of the Euler equation 

DaEIZ!Dt = EIZ div VIZ • (19) 
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We shall concentrate on the case where the n-th constituent (solid) does not react 

r. == 0 (20) 

(however, it can have an influence on the reaction velocity as a heterogeneous cata­
lyst1). For this constituent, the mass balance can be obtained by integration of Eq. 
(18) in the form 

(21) 

where (2: is the density in reference configuration of component n, considered as 
known (as the field (2:(X.)). The mass balance of the mixture is given by 

.-1 

l>a = 2: rp = o. (22) 
,,=1 P=1 

The momentum balance of constituent r:J. is 

(2" D"V"/D! = div T" + (2ib" + ia) + k" , (23) 

where Ta is the (partial) stress tensor of constituent rJ., ka is the interaction 
volume force acting on constituent r:J. (originating from the other constituents), b" 
is the external volume force acting on it (e.g. gravitation), and i" is the apparent 
force acting on it (only in non-inertial reference systems). 

The momentum balance of the mixture is 

• 
2: (k" + r"v,,) = 0 (24) 

,,=1 

and the balance of the moment of momentum of constituent r:J. is 

Ma = Ta - T;, (25) 

where Ma denotes the moment of forces (in unit volume) acting on it and originating 
from the other constituents (directly, i.e. not mediated by the moments of forces 
from the balance (23)). For M" == 0 the tensors T" are symmetrical. 

The balance of the moment of momentum of the mixture has the form 

2:Ma = 0 (26) 
,,=1 

and the balance of the energy of the mixture is 

• • n 

I (2" D"u"/Dt + I r"u" = I tr T!L" - div q + 
",=1 a=l ",=1 
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n n 

+ Q - L k~ . u~ - 1- I r~u; , (27) 
~~ I ~~1 

where u~ is the (partial) internal energy of constituent Ct, q is the heat flux, and Q 
denotes the heat source (e.g. by radiation). The second law of thermodynamics in the 
local form corresponds to the Clausius-Duhem inequality 

n n 

C1 = L (}~ D~sajDt + I raSa + div (qjT) - QjT;?; 0, (28) 
~~1 ~~1 

where Sa is the partial entropy of constituent Ct, Tabsolute temperature, and C1 denotes 
the production of entropy. Thus, we concentrate on the case where a single tempera­
ture T corresponds to all constituents of the mixture; therefore only the energy 
balance (27) for the mixture need be considered 2 ,4 - 7. The partial free energy of 
constituent Ct is defined by the familiar relation 

(29) 

By eliminating q and Q from Eqs (27) and (28) and using Eq. (29)we obtain the 
reduced inequality 

" n n 

- TC1 = L (}~ Dq:f~jDt + L rq:j~ + L (}q:Sq: Dq:TjDt + 
q:~1 ~~1 q:~1 

n n n 

+ (qjT). g + L ka • Uq: - L tr T;;Lq: + 1- L rq:u; ~ 0, (30) 
~~1 a~l ~~I 

where 

g = grad T (31) 

is the temperature gradient. 

Stoichiometry 

As usual, we shall assume that all constituents of the mixture ( chemical compounds) 
are composed of atomic substances (e.g. atoms of elements) which do not change 
during chemical reactions (so-called postulate of permanence of atomic substances), 
and we shall use the Bowen method" for the mathematical treatment (compare2 •6 ,7). 

Let Tt1~ denote the number of atoms of the type C1 in the constituent Ct (there are at 
most z atoms of the type C1 = 1, ... , z in the mixture). Each atomic substance is 
characterized by its atomic mass .s;1t1 (here it is preferable to use also superscripts), 
and accordingly the molar mass of each constituent can be expressed as 

(32) 
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The postulate of permanence acquires the form 

n 

L T".J· = 0, (f = I, ... , Z , 
a:=1 

1625 

(33) 

where the rate of conversion J. (in moles of constituent ct. per unit time in unit 
volume) is 

(34) 

Further it is necessary to know the rank, 11, of the matrix of T" •. Two cases may 
occur: for h = n the mixture is non-reacting (r. == 0 for any ct.), and for h < n 
chemical reactions can proceed in the mixture. It can be shown2 •6 • 7.11 that the postu­
late of permanence can be equivalently expressed as follows: The abstract n-dimen­
sional vectorial space (in which the vector of molar masses M or of chemical con­
version rates J can be set up from the components M. or r) can be decomposed 
to two subspaces, one of which (of dimension h) always contains the vector M and 
the other (so-called reaction subspace of dimension n - h) always contains the 
vector ). 

Each base of the (II - h)-dimensional reaction subspace corresponds to the choice 
of n - It independent chemical reactions, and the components J p of the vector J 
in this base express the rates of these reactions. The components J p and r are uni­
quely interdependent, e.g. 

n-h 

J. = I J ppP.. ct. = 1, ... , n , 
p~l 

(35) 

where pp. are stoichiometric coefficients of the constituent rx in the p-th independent 
chemical reaction (the matrix of PP' has the rank 11 - h). 

Constitutive Equatiolls 

Starting from the so-called constitutive principles2 - 7 and properties of reacting6 •7 .10 

and non-reacting mixtures4 . 5 •8 , we shall propose the constitutive equations of 
a reacting fluid mixture and non-reacting solid substance for the following quantities: 

U~, Sa' Ta, kp, r,p' q, PJ = .'F(FII' Gil' (}o' ho• uo• T, g, f3q) (36) 

,,=I, ... ,n; {f,(j=I, ... ,11-1; (p=I, ... ,n-2; q=l, ... ,s 

where .'F denotes the constitutive functions .1., '~7' T., kp, r 'P' q, and lq of the inde­
pendent variables given on the right-hand side. Thus, e.g. the constitutive equations 
for the material derivatives of the internal parameters {3q (which are s in number) 
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with respect to the n-th constituent (compare Eq. (10))* are 

q = 1, ... , S . (37) 

By the definitions (29), (34), (35), and (38)-(40) it can be seen that the same type 
of constitutive equations applies for J", J P' Ua, j~ s, and ga; similarly the quantities 
rm rn -l and kn can be obtained from Eqs (20), (22), and (23). The constitutive equa­
tions (36) hence express that the n-th constituent is solid (or of any symmetry) and 
others are fluid (deformations exert an influence only through the densitiesS -7 .12) 
and obey, among others, the constitutive principles of equipresence {independent 
variables are in all constitutive equations the same} and objectivity (all variables 
are independent of the choice of the reference system; we shall not deal with iso­
tropicity of the constitutive functions, leading to further reduction of their form, 
since the tensor character of Pq is not known, not to speak about other reasons). 

The most important restrictions referring to the constitutive equations (1) follow 
from the principle of dissipation (or admissibility)13.14, to which the rest of the 
present work is devoted (see als02- 8 •10). According to this principle, the Clausius­
-Duhem inequality (28) is satisfied for all processes obeying the balances in the 
material with constitutive equations (36) (so-called admissible thermodynamic 
processes). For all such processes the reduced inequality (30) must be satisfied, 
whence follow aditional restrictions referring to the constitutive equations (36). 

We introduce the free energy of the mixture, f 

n 

(38) 

the entropy of the mixture, s 

(39) 

and chemical potential, ga' of the constituent IX 

ga = O(}J/O(}a IX = 1, ... , n , (40) 

• We use this derivative owing to the special function of the n-th constituent in our model. 
However, it may be that a constitutive equation of the type (37) could be used for DaPq/Dt 
with 01 ::j:: n. Yet such model is generally different, as can be seen when Pq is recalculated to 
DaPq/Dt for cc =1= n (by Eq. (11»: in fact, owing to grad P the constitutive equations for DaPq/Dt 
are not functions of the type (37), but functionals depending also on the history (past values) 
of the dependent variables. 
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where Q is the density of the mixture 
n 

Q = L Q", (41) 
",=1 

(note that j, s, and g", are given by a constitutive equation of the type (36)). By 
introducing the constitutive equations (36) into Eq. (30) we obtain after rearrangement 
(particularly of the term D",f",/Dt) using Eqs (9), (11), (14) (to express aQ~/at), (15) 
(to express ah",/at), and (38)-(40) finally the following inequality: 

11 n-2 

- TG = L g",r", + L [(aJlah~) - (aJlah~-I)J [(arq>jaF~J) G!JKF;;1 Ki + 
0=1 '1'=1 

/I-I 
+ (arq>jaG!JK(GradGn)iJKLF;;ILi + I(arq>jaQ,,)h! + 

0= 1 
11-1 11-1 

+ I (clrq>jahn (grad h,,)ii + I (arq>jauD (zjJ - zj~) + 
"=1 "=1 

• 
+ (Drq>jrlT) gi + (arq>jag i) (grad g)ii + I (orq>jafiq) (grad fiqJi] + 

q= 1 

11- 1 " 11- I 

+ I I Qa(aJ.jah,,) . (grad h,,) Uo - I Q(iJJjah,,) . (grad h~) u" -
"=1.=1 .=1 

11- t n- 1 

- I Q(aJjah~) Q~. grad tr L" - I Q(aJjaho). hoL,,-
0=1 0=1 

n-l 11-1 11-1 

- I Q(aJjiJho) . ho tr Lo + I rJ(ofJauo) . (av"ji'it) - I (](aJjau,,) . Vn + 
0=1 0=1 0=1 

11 11-1 

+ Q(aJjaF!J) F!JLi~ - I I (]a(aJojau~) u!LJ~ - T:jLi~ + 
0= 1 ,,= 1 

11-1 11 11-1 11-1 11 

+ I L Qiaj~jau~) V!Lij - I TjjLJj - I I QoQa(aJajaQ,,) bijLij + 
0=10=1 "=1 0=1,=1 

11 11-1 tI 

+ I QiaJojaF~J) u!G~JKF;; 1 Ki + I I (]a(aJoji'iQo)(ua - Uo) . ho + 
a=1 0=1 a=1 

/I 
+ (aJjaG!JK) G~JK + I (Ja( aJojaG~JK) u!( Grad G/I)iJKL F;; 1 Lj + 

a=1 

II 

+ Q((aJjaT) + s) (a Tjill) + I Qa((aJaj(lT) + S,) Va . g + 
2=1 

n ,')' 

+ Q(aJjag). (agjat) + I QiaJajagi)(grad g)ij v~ + I Q(aJjafiq) {Jq + 
a=1 q=1 

S 11 11-1 

+ I I Q.(aJojafiq ) ua · grad fiq + (ljT) q. g + L ko · Uo + 
q=1 a=1 0=1 

n 

+ I(lj2)rou; ~ O. (42) 
0=1 
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As already mentioned, according to the dissipation principle the en tropic inequality 
(28) and hence also the reduced inequality (30) must be satisfied for all admisisble 
thermodynamic processes, i.e. for all fields of motion (deformations), temperature, 
density, and internal parameters and the corresponding responses of the constitutive 
equations (36), which satisfy all balances (13)-(27). The energy balance (27) or 
the momentum balance of the constituent (23) are satisfied by suitable Q or bl% 
(or bl% + ;1%)' since these fields can essentially be determined from the outside of the 
mixture. The balances of momentum (24) and mass (22) of the mixture are satisfied 
by suitable kn or rn -1' Hence, according to the mentioned principle the inequality 
(42) must also be satisfied for all fields of motion, densities, and internal parameters 
chosen in the material with constitutive equations (36) so that the mass balances 
of the constituents (13) or (18) be also satisfied. Particularly, the inequality (42) 
must be satisfied for the following fields in a mixture where y is an arbitrary point 
with particles YI% of all constituents CI. = 1, ...• 11 at any instant T and x is an arbitrary 
point with particles XI% of all constituents at a certain instant t: 

The field of motion for n-th constituent 

I'i = Xi(y r) = Xi + Vi(T _ t) + FiJ/yJ _ XJ) + LGiJK(yJ _ XJ) (yK _ XK) + 
p n n' n n \ n n ""1 n n n n n 

+ Li~F~J(y~ - X!) (r - t) + ~v~(r - t)2 + 
+ i(Grad Gn)iJKL (Y~ - X!)(YnK - X~)(YnL - X;) + tG~JK(y~ - X!) . 

. (YnK - X~)(T - t), (43) 

where use was made of Eq. (12) for Fn. 
An analogous field can be chosen for the chemically reacting constituents, f3 = 

1, ... , n - 1; their references are chosen so that in the point x and instant t 

Fp = 1, Gp = 0, Grad Gp = 0 

and use is made of Eqs (9) and (10) 

i = X~(Yp, r) = Xi + v~(r - t) + bi\YJ - X~) + L~biJ(YJ - X~) (T - t) + 

(44) 

+ t(ov~jot + v~IJI!) (r - t)2 + t(grad LfJ)iik bkKbiJ(YJ - X~) (Yf - X~) (T - t), 

(45) 

where biJ are shifters 15 (or Kronecker delta symbols, when the space and reference 
<:oordinates coincide). 

The temperature field is chosen as follows: 

T(y, r) = T + (aT/at) (T - t) + gi(i - Xi) + t(grad g)ii (i - Xi) (.vi - xi) + 
+ (agijot) (yi _ Xi) (T - t) . (46) 
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In the fields above, all the quantities 

Va' Gm Fm Vn, Grad Gn, (t, av plat, grad Lp, La , (47) 

T, aT/at, g, grad g, aglat ex = 1, ... , n; {3 = 1, ... , n - 1 (48) 

are taken at the point x with particles Xa at the instant t. 
Let us further consider the field of the quantities Yp (17) in a body with particles 

Yp, but at a chosen instant t (in contrast to (43), (45), and (46)) 

yp(Yp, t) = Y(J + (Grad yp)J (YJ - X~) + 
+ 1(Grad (Grad Y(J))JK (YJ - X~)(YpK - X~) = (lp + 

+ hiljiJ(y? _ XJ) + l(hihiljiKljiL + (J P P ~ P P 

+ (grad h(J)ij ljiKljiL) (Yt - X~) (Yt - X~) . 

In the second expression, use was made of the definitions (4), (5), (16), and (44). 

(49) 

Finally, let us consider the field of internal parameters {3q in the mixture at the point 
y but again only at the chosen instant t 

() ( ) i iJ( J J {3q Yn, t = {3q + grad {3q Fn Yn - Xn) q = 1, ... , s. 

Here again, the quantities F!J and 

(lp, hp, grad h(! {3 = 1, ... , n - 1 

q = 1, ... , S 

are taken at the point x in chosen particles Xa and at a chosen instant t. 

(50) 

(51) 

(52) 

Now, if we choose the values of the quantitites (47), (48), (51), and (52) at an 
arbitrary point x (with particles Xa) and instant t arbitrarily and mutually indepen­
dent, we obtain an admissible thermodynamic process. Indeed, such a choice gene­
rates the fields of motion (43) and (45) and temperature (46); the field of internal 
parameters is obtained by solving the differential equations (37) with the initial 
condition (50) and values (52) at the point x and instant t. Finally, it remains to 
satisfy the mass balance of the constituents {3 = 1, ... , n - 1 (the mass balance of 
n-th constituent (21) determines the field (In by motion (43), since the density of n-th 
constituent in the reference is conserved as given beforehand), which can be achieved 
by solving the differential equations (18) with initial conditions (49). According to 
the dissipation principle, also the inequality (42) must be fulfilled, i.e. it must hold 
good at a given point x (with particles Xa) and instant t with an arbitrary choice 
of the quantities (47), (48), (51), and (52). This leads to a restriction of the constitu-
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tive equations (36) (and those for s, j, and ga). Indeed, let us choose, at arbitrary x 
and t, some values of 

(53) 

for IX = I, ... , 11, (j = 1, ... , 11 - 1, q = 1, ... , s. Thus, the values of the responses. 
(36) and hence of j, s, ga are determined (compare Eqs (38), (39) and (41); Eq. (21) 
is used for Qn). The remaining quantities (47), (48), (51), and (52) 

La' Vno Grad Gn, Gn, oVp/ot, grad Lp, grad g, 

ag/Dt, grad hp, grad Pq , ar/at (54) 

are fixed except for, e.g., the last one, ar/ot. Since the inequality (42) depends linearly 
on this quantity, the corresponding multiplicative term must be equal to zero 

oJ/ar = -s (55) 

and this is an identity, since the quantities (53) are arbitrary. Analogously, by 
choosing a suitable grad Lp (e.g. with only one non-zero term aL~ l/axi) with all 
other quantities (53) and (54) constant we obtain that the multiplicative term standing 
with grad tr Lo in the inequlity (42) is equal to zero identically 

aJ/oho = 0, (j = 1, ... , 11 - 1 , (56) 

leading to a simplification of (42). Analogously, from the linearity of the dependence 
on avo/at in (42) we obtain the identities 

aJ/Duo = 0, (j = 1, ...• 11 - 1 (57) 

and from the linearity in G~JK follows the identity 

(58) 

(according to the definition, this derivative has the same symmetry in J, K as G~]K) 
and from the linearity of (42) in ag/at 

aJ/og = o. (59) 

Further we have the terms in (42) linear in Lo. which by the same procedure lead to 
the identity for (j = 1, ... , n - 1 

n n 

I Qa(aJa/au~) v~ - rJi - I QaQo(aJa/aQo) (jii = 0 (60) 
a=l a=l 
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and terms linear in Ln give identically 

n n-1 

- L L(!a(aJa/au~)u! - T:j + (!(aJ/aF~J)F~J = O. (61) 
a= 1 0= 1 

There is a term in (42) linear in the symmetric tensor grad hI) and therefore the tensor 
forming the product with it is anti symmetrical 

n n 

L (la(aJa/ah~) u! + L (la(aJa/ah~) u! = 0 (62) 
a= 1 a= 1 

for {) = 1, ... , n - 1, and for the same reason the tensor forming the product with 
the symmetrical tensor grad g in (42) is also anti symmetrical 

n n 

L (la(aJa/ag i ) v! + L (la(aJa/ag j) v! = O. (63) 
a=1 a=l 

Now, we have a term in (42) linear in the arbitrary Grad Gn and again this expression 
must cancel out. Then, with respect to symmetry of (Grad Gn)iJKL in the superscripts 
J, K, L (only 30 components out of 81 are independent), the tensor DiJKL of the 4th 
order 

n 

D iJKL == L (la(aJa/aG~JK) F; 1 Lju! (64) 
a=l 

satisfies the relations6 •16 

D1JJJ = 0, DiJJK + DiJKJ + D iKJJ = 0 , 

D i123 + Di312 + Di231 + Di132 + Di213 + Di321 = 0, i, J, K, L = 1,2,3, (65) 

where the bold type superscripts are excluded from the summation rule. 
At last, we have a term in (42) that depends linearly on grad Pq ; this is, however, 

arbitrary (compare Eq. (50)), hence 

n 

L (la.Calc,,/apq ) ua = 0, q = 1, ... , S (66) 
a=1 

and so the inequality (42) is reduced to 

n n 

'T! _" "(a'l' /aF iJ) aGiJKF- 1 Kj + -1(1 - ,t...,gara + ,t...,(la 'Ja n U j n n 
a=! a=l 

n n-l n 

+ L L (la(aJa/a(lIl)(Ua - UI») • hI) + L (li(aJ,,/aT) + sa) Va. g + 
a=I.1=1 a=1 

s n-1 n 

+ L (l(aJ/apq) Pq + (l/T) q . g + L k.l. U.I + 1- L raU; ~ O. (67) 
q=1 .1=1 a=1 
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With the aid of the results (8), (55), (57), and (59) the expressions (60), (63), and (67) 
can further be rearranged as follows, From,Eq, (60) we obtain 

" n-l 

T~j + '[. (M!iaj"jae6) bii - '[. ep(ajpjau!) ub = 0 (68) 
,,=1 P=1 

for b = 1, .. " n - 1, and from Eq, (63) 

" L. (e"(aj,,jal) u~ + e"(aj,,jagi ) u!) = 0 (69) 
,,=1 

and finally the inequality (67) can be rewritten as 

n-l n-h n-I s 

-TCf = !L.rpu~ + LJpAP + L.PP.up + m.(gjT) + e'[.aqpq ;;;; 0, (70) 
P=1 p=1 P=1 q=1 

where the affinity aq for the internal parameter is given as 

aq == ajjapq, q = 1, .. " s, (71) 

the chemical affinity of p-th chemical reaction, AP (differing in sign from the classical 
definition) is defined as 

" AP == Lg"M"PP", P = 1, .. " n - h, (72) 
,,=1 

where g"M" is the molar chemical potential; further we define 

" 
m == q + L e"((aj,,jaT) + s,,) U", (73) 

,,=1 

"-1 

p~ == kb - gphb + '[.(aeJpjae6)/d + (aeJplaF~J)G~JKF;;IKj, 
6= 1 

P = 1, "" n - 1, (74) 

Finally it can be seen from Eqs (56)-(59) that the constitutive equations for f and 
hence also for s according to Eq, (55) are 

(75) 

Equilibrium 

Keeping in mind the zero production of entropy, we define the equilibrium as a state 
for which 

Up = 0 == up P = 1, .. " n - 1, g = 0 == gO, (76), (77) 
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r; = 0 cp = 1, ... , n - 2, P; = 0 q = 1, ... , s , (78), (79) 

(where the superscript 0 refers to equilibrium). Hence, in equilibrium we have (J = 0 
according to Eq. (70). Other independent variables attain their equilibrium values 
F:, G:, (/~, h~, TO, and P~ for ~ = 1, ... , n - 1, q = 1, ... , s. Hence, for example, 
according to Eqs (36) and (37) 

(80) 

(81) 

Hence, according to Eqs (20), (22), and (78) r: = 0 for a = 1, ... , n and in the 
equilibrium we have according to Eq. (34) 

J~O = 0 a = 1, ... , n, J~ = 0 p = 1, ... , n - h, (82), (83) 

where the latter equation follows from (35) and (82) and from the rank n - h of 
the matrix of stoichiometric coefficients Pp~. 

It follows from the definitions (76)-(79) that the quantity Ta == n = n(Fn' Gn, 
(/6' h6' u6, T, g, Pq) has in the equilibrium the value of zero, which is at the same 
time the minimum (compare Eq. (67)). Hence, 

~ n(F: + AC, G: + ).B, (!~ + A1X6, h~ + A16' AU6, TO + AT, Ag, P~ + A~q)I;.=o = 0 
dA 

~ = 1, ... , n - 1, q = 1, ... , s, (84) 

where A is a real parameter and the quantities C (tensor of the second order), B 
(tensor of the third order), 16, U6, g (vectors), a6, T, and ~q (scalars) are arbitrary 
(whatever values they have, n is defined if A is sufficiently small). For the same 
reason, 

(85) 

however the implications of this inequality will not be dealt with here. 

By introducing Eqs (70)-(75) into (84) we obtain for A = 0 (with the aid of Eqs 
(77)-(79) and (83) and constitutive equations (36) and (37)) after rearrangement 
an expression, which is linear with respect to the arbitrary quantities occurring in 
Eq. (84), so that the corresponding multiplicative terms, which are given below, 
must be equal to zero (the term occurring with B!JK must be symmetrized with respect 
to the last two superscripts, since the tensor B!JK has the same symmetry - see Eq .. 
(87)) 
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n-h s 

L (oJp/OF!J)O APo + L (fa~(olq/oF!J)o = 0, (86) 
p;l q;! 

n-h 

L [(oJp/oG!JK)O + (oJp/oG~KJ)o] APo + 
p;! 

s 

+ L [(olq/oG!JK)O + (olq/oG~KJ)o] (l°a~ = 0, (87) 
q;l 

n-h s 

L (OJp/O(ld)O APo + L (olq/o(la)O (loa; = 0 (j = t, ... , n - 1 , (88) 
p;! q;! 

n-h ~ 

L (OJp/Oh6)O APo + L (olq/oha)O (loa; = 0 (j = 1, ... , n - t , (89) 
p;! q;l 

n-h s 

L (oJp/OT)O APO + L (olqjoT/ (loa; = 0, (90) 
p;1 q;1 

n-h s 

L (oJp/ofJr)O APo + L (olq/ofJr)O (l°a~ = 0 r = 1, ... , s, (91) 
p;l q=l 

n-h s 

L (oJp/ou~)O APo + L (olq/ou~)O (loa; + k~o - gph~O + (92) 
p;! q;! 

n-l 

+ L (O(lJp/O{}a)O h~o + (o(lJp/oF!J)O G~JKOFn-! KJo = 0, 
a=1 

fJ = 1, ... , n - 1, 
n-h s 

(l/TO) qO + L (oJp/og)O APo + L (olq/ogy (loa; = O. (93) 
p=1 q=l 

Let us now consider a system of linear homogeneous equations consisting of n - 1 + 
+ s equations (88) and (91) for n - h + s unknowns APo, a; (p = 1, ... , n - h; q = 
= 1, ... , s). Since h ~ 1, we have n - 1 + s ~ n - h + s, hence if we assume that 
the matrix of this system has the rank n - h + s, then in the equilibrium 

APO = 0 p = 1, ... , n - h, a; = 0 q = 1, ... , s . (94), (95) 

The mentioned assumption seems plausible, since in the opposite case (if, for the 
conditions (78) and (79), the conditions (94) and (95) were invalid) we would have 
to deal with "frozen" chemical reactions or internal parameters. 

Conversely, it would be possible to use the conditions (94) and (95) to define the 
so-called strong equilibrium2 in place of the conditions (78) and (79), which can then 
be derived under a similar plausible assumption as a consequence. 

The resulting conditions (94) and (95) imply trivial validity of the other relations 
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(86)-(91) and reduce Eqs (92) and (93) to the form 

n-l 

k~o = gph~O - r. (oeJ,joe,)O h~o - (oeJ,joF:!)O G!JKoF; 1 Kjo 
6=1 

p = 1, ... , n - 1, (96) 

(97) 

the latter equation means that the heat flux in the equilibrium is equal to zero 
Hence, according to Eqs (73), (74), and (76) 

$)_ = 0 p = 1, ... , n - 1, mO = 0 (98), (99) 

in accord with zero production of entropy in the equilibrium. 
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